Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513278

RESUMO

The pollution of industrial wastewater has become a global issue in terms of economic development and ecological protection. Pseudomonas oleovorans has been studied as a bacterium involved in the treatment of petroleum pollutants. Our study aimed to investigate the physicochemical properties and drug resistance of Pseudomonas oleovorans isolated from industrial wastewater with a high concentration of sulfate compounds. Firstly, Pseudomonas oleovorans was isolated and then identified using matrix-assisted flight mass spectrometry and 16S rDNA sequencing. Then, biochemical and antibiotic resistance analyses were performed on the Pseudomonas oleovorans, and a microbial high-throughput growth detector was used to assess the growth of the strain. Finally, PCR and proteomics analyses were conducted to determine drug-resistance-related genes/proteins. Based on the results of the spectrum diagram and sequencing, the isolated bacteria were identified as Pseudomonas oleovorans and were positive to reactions of ADH, MTE, CIT, MLT, ONPG, and ACE. Pseudomonas oleovorans was sensitive to most of the tested antibiotics, and its resistance to SXT and CHL and MIN and TIM was intermediate. The growth experiment showed that Pseudomonas oleovorans had a good growth rate in nutrient broth. Additionally, gyrB was the resistance gene, and mdtA2, mdtA3, mdtB2, mdaB, and emrK1 were the proteins that were closely associated with the drug resistance of Pseudomonas oleovorans. Our results show the biochemical properties of Pseudomonas oleovorans from industrial wastewater with a high concentration of sulfate compounds and provide a new perspective for Pseudomonas oleovorans to participate in biological removal of chemical pollutants in industrial wastewater.


Assuntos
Poluentes Ambientais , Pseudomonas oleovorans , Pseudomonas oleovorans/genética , Pseudomonas/metabolismo , Águas Residuárias , DNA Ribossômico/metabolismo , Poluentes Ambientais/metabolismo
3.
Sci Total Environ ; 856(Pt 1): 158944, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152867

RESUMO

Arsenic (As) has become natural health hazard for millions of people across the world due to its distribution in the food chain. Naturally, it is present in different oxidative states of inorganic [As(V) and As(III)] and organic (DMA, MMA and TMA) forms. Among different mitigation approaches, microbe mediated mitigation of As toxicity is an effective and eco-friendly approach. The present study involves the characterization of bacterial strains containing arsenite methyltransferase (Pseudomonas oleovorans, B4.10); arsenate reductase (Sphingobacterium puteale, B4.22) and arsenite oxidase (Citrobacter sp., B5.12) activity with plant growth promoting (PGP) traits. Efficient reduction of grain As content by 61 % was observed due to inoculation of methyltransferase containing B4.10 as compared to B4.22 (47 %) and B5.12 (49 %). Reduced bioaccumulation of As in root (0.339) and shoot (0.166) in presence of B4.10 was found to be inversely related with translocation factor for Mn (3.28), Fe (0.073), and Se (1.82). Bioaccumulation of these micro elements was found to be associated with the modulated expression of different mineral transporters (OsIRT2, OsFRO2, OsTOM1, OsSultr4;1, and OsZIP2) in rice shoot. Improved dehydrogenase (407 %), and ß-glucosidase (97 %) activity in presence of P. oleovorans (B4.10) as compared to arsenate reductase (198 and 50 %), and arsenite oxidase (134 and 69 %) containing bacteria was also observed. Our finding confers the potential of methyltransferase positive P. oleovorans (B4.10) for As stress amelioration. Reduced grain As uptake was found to be mediated by improved plant growth and nutrient uptake associated with enhanced soil microbial activity.


Assuntos
Arsênio , Arsenicais , Arsenitos , Oryza , Pseudomonas oleovorans , Humanos , Arsênio/toxicidade , Arsênio/metabolismo , Arseniato Redutases/metabolismo , Pseudomonas oleovorans/metabolismo , Raízes de Plantas/metabolismo , Grão Comestível/metabolismo , Arsenicais/metabolismo , Metiltransferases , Arsenitos/metabolismo
4.
Braz. j. biol ; 83: e240015, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1285624

RESUMO

Abstract Zinc is an essential micronutrient that is required for optimum plant growth. It is present in soil in insoluble forms. Bacterial solubilization of soil unavailable form of Zn into available form, is an emerging approach to alleviate the Zn deficiency for plants and human beings. Zinc solubilizing bacteria (ZSB) could be a substitute for chemical Zn fertilizer. The present study aimed to isolate and characterize bacterial species from the contaminated soil and evaluate their Zn solubilizing potential. Zn resistant bacteria were isolated and evaluated for their MIC against Zn. Among the 13 isolated bacterial strains ZSB13 showed maximum MIC value upto 30mM/L. The bacterial strain with the highest resistance against Zn was selected for further analysis. Molecular characterization of ZSB13 was performed by 16S rRNA gene amplification which confirmed it as Pseudomonas oleovorans. Zn solubilization was determined through plate assay and broth medium. Four insoluble salts (zinc oxide (ZnO), zinc carbonate (ZnCO3), zinc sulphite (ZnS) and zinc phosphate (Zn3(PO4)2) were used for solubilization assay. Our results shows 11 mm clear halo zone on agar plates amended with ZnO. Likewise, ZSB13 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18.2 ppm). Furthermore, Zn resistance genes czcD was also enriched in ZSB13. In our study, bacterial strain comprising Zn solubilization potential has been isolated that could be further used for the growth enhancement of crops.


Resumo O zinco é um micronutriente essencial necessário para o crescimento ideal das plantas. Ele está presente no solo em formas insolúveis. A solubilização bacteriana da forma indisponível de Zn no solo para a forma disponível é uma abordagem emergente para aliviar a deficiência de Zn em plantas e seres humanos. Bactérias solubilizadoras de zinco (ZSB) podem ser um substituto para fertilizantes químicos de Zn. O presente estudo teve como objetivo isolar e caracterizar espécies bacterianas de solo contaminado e avaliar seu potencial de solubilização de Zn. Bactérias resistentes ao Zn foram isoladas e avaliadas quanto ao seu MIC contra o Zn. Entre as 13 cepas bacterianas isoladas, ZSB13 apresentou valor máximo de MIC de até 30 mM/L. A cepa bacteriana com maior resistência ao Zn foi selecionada para análise posterior. A caracterização molecular de ZSB13 foi realizada por amplificação do gene 16S rRNA que o confirmou como Pseudomonas oleovorans. A solubilização do Zn foi determinada através de ensaio em placa e meio caldo. Quatro sais insolúveis (óxido de zinco (ZnO), carbonato de zinco (ZnCO3), sulfito de zinco (ZnS) e fosfato de zinco (Zn3 (PO4) 2) foram usados ​​para o ensaio de solubilização. Nossos resultados mostram uma zona de halo clara de 11 mm em placas de ágar corrigidas com ZnO. Da mesma forma, ZSB13 mostrou liberação significativa de Zn em caldo alterado com ZnCO3 (17 e 16,8 ppm) e ZnO (18,2 ppm). Além disso, os genes de resistência ao Zn czcD também foram enriquecidos em ZSB13. Em nosso estudo, a cepa bacteriana compreendendo potencial de solubilização de Zn foi isolada e poderia ser usada posteriormente para o aumento do crescimento de safras.


Assuntos
Humanos , Poluentes do Solo , Pseudomonas oleovorans , Solo , Microbiologia do Solo , Zinco , RNA Ribossômico 16S/genética
5.
Nat Microbiol ; 7(11): 1870-1878, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175516

RESUMO

Bacterial Type IV CRISPR-Cas systems are thought to rely on multi-subunit ribonucleoprotein complexes to interfere with mobile genetic elements, but the substrate requirements and potential DNA nuclease activities for many systems within this type are uncharacterized. Here we show that the native Pseudomonas oleovorans Type IV-A CRISPR-Cas system targets DNA in a PAM-dependent manner and elicits interference without showing DNA nuclease activity. We found that the first crRNA of P. oleovorans contains a perfect match in the host gene coding for the Type IV pilus biogenesis protein PilN. Deletion of the native Type IV CRISPR array resulted in upregulation of pilN operon transcription in the absence of genome cleavage, indicating that Type IV-A CRISPR-Cas systems can function in host gene regulation. These systems resemble CRISPR interference (CRISPRi) methodology but represent a natural CRISPRi-like system that is found in many Pseudomonas and Klebsiella species and allows for gene silencing using engineered crRNAs.


Assuntos
Pseudomonas oleovorans , Pseudomonas oleovorans/genética , Sistemas CRISPR-Cas , Bactérias/genética , DNA , Desoxirribonucleases
6.
Chemosphere ; 307(Pt 1): 135700, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35850225

RESUMO

Soil that contained polybutylene adipate-co-terephthalate (PBAT) was incubated with Priestia megaterium, Pseudomonas mendocina, and Pseudomonas pseudoalcaligenes to improve the biodegradative process of this polymer. The mixture of Pr. megaterium and Ps. mendocina was highly effective at biodegrading the PBAT, and after eight weeks of soil incubation, approximately 84% of the PBAT film weight was lost. Mixtures of the other two species also positively affected the synergistic degradation of PBAT film in the soil, but the mixture of three species had a negative effect. The residual PBAT film microstructure clearly demonstrated the degradation of PBAT, and the degree of degradation was related to the different species. Cleavage of the PBAT film ester bond after soil microbial action affected its properties. The incubation of PBAT in soil that contained these species affected soil dehydrogenase and soil lipase in particular. The secretion of lipase by these species could play an important role in the degradation of PBAT in the soil.


Assuntos
Bacillus megaterium , Pseudomonas mendocina , Pseudomonas oleovorans , Pseudomonas pseudoalcaligenes , Adipatos , Ésteres , Lipase , Oxirredutases , Ácidos Ftálicos , Polienos , Poliésteres/química , Polímeros , Solo
7.
Arch Microbiol ; 204(7): 383, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689128

RESUMO

The control of a pyrimidine ribonucleotide salvage pathway in the bacterium Pseudomonas oleovorans ATCC 8062 was studied. This bacterium is important for its ability to synthesize polyesters as well as for its increasing clinical significance in humans. The pyrimidine salvage pathway enzymes pyrimidine nucleotide N-ribosidase and cytosine deaminase were investigated in P. oleovorans ATCC 8062 under selected culture conditions. Initially, the effect of carbon source on the two pyrimidine salvage enzymes in ATCC 8062 cells was examined and it was observed that cell growth on the carbon source succinate generally produced higher enzyme activities than did glucose or glycerol as a carbon source when ammonium sulfate served as the nitrogen source. Using succinate as a carbon source, growth on dihydrouracil as nitrogen source caused a 1.9-fold increase in the pyrimidine nucleotide N-ribosidase activity and a 4.8-fold increase in cytosine deaminase activity compared to the ammonium sulfate-grown cells. Growth of ATCC 8062 cells on cytosine or dihydrothymine as a nitrogen source elevated deaminase activity by more than double that observed for ammonium sulfate-grown cells. The findings indicated a relationship between this pyrimidine salvage pathway and the pyrimidine reductive catabolic pathway since growth on dihydrouracil appeared to increase the degradation of the pyrimidine ribonucleotide monophosphates to uracil. The uracil produced could be degraded by the pyrimidine base reductive catabolic pathway to ß-alanine as a source of nitrogen. This investigation could prove helpful to future work examining the metabolic relationship between pyrimidine salvage pathways and pyrimidine reductive catabolism in pseudomonads.


Assuntos
Nucleosídeo Desaminases , Pseudomonas oleovorans , Sulfato de Amônio , Carbono , Citosina Desaminase , Humanos , Nitrogênio , Nucleosídeo Desaminases/metabolismo , Nucleotídeos de Pirimidina , Pirimidinas/metabolismo , Ribonucleotídeos , Ácido Succínico/metabolismo , Uracila/metabolismo
8.
Chemosphere ; 286(Pt 1): 131552, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34320440

RESUMO

Bioaugmented biotrickling filter (BTF) seeded with Piscinibacter caeni MQ-18, Pseudomonas oleovorans DT4, and activated sludge was established to investigate the treatment performance and biodegradation kinetics of the gaseous mixtures of tetrahydrofuran (THF) and methyl tert-butyl ether (MTBE). Experimental results showed an enhanced startup performance with a startup period of 9 d in bioaugmented BTF (25 d in control BTF seeded with activated sludge). The interaction parameter I2,1 of control (7.462) and bioaugmented BTF (3.267) obtained by the elimination capacity-sum kinetics with interaction parameter (EC-SKIP) model indicated that THF has a stronger inhibition of MTBE biodegradation in the control BTF than in the bioaugmented BTF. Similarly, the self-inhibition EC-SKIP model quantified the positive effects of MTBE on THF biodegradation, as well as the negative effects of THF on MTBE biodegradation and the self-inhibition of MTBE and THF. Metabolic intermediate analysis, real-time quantitative polymerase chain reaction, biofilm-biomass determination, and high-throughput sequencing revealed the possible mechanism of the enhanced treatment performance and biodegradation interactions of MTBE and THF.


Assuntos
Éteres Metílicos , Pseudomonas oleovorans , Biodegradação Ambiental , Burkholderiales , Furanos , Éteres Metílicos/análise
9.
Bioresour Technol ; 338: 125568, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274579

RESUMO

Bioaugmentation in wastewater treatment plants (WWTPs) is challenging due to low survival and persistence of applied microbes. This study aimed to track the capacity and survival of fluorescent-tagged Pseudomonas oleovoransICTN13 as a model organism applicable in bioaugmentation of phenol-containing wastewater. The isolate was immobilized in alginate biopolymer, and enhanced efficacy and survival for biodegradation of phenol against free cells were studied. Encapsulated cells resulted in enhanced phenol removal efficiency (~94%) compared to free cells (~72%). Encapsulation of cells facilitated an extended storage time of 30 days. Remarkably, phenol and COD removal efficacy of encapsulated cells was sustained up to ~ 92-93% in a reactor after 45 days, while free cells could produce ~ 80-84% removal efficiency. Fluorescence microscopy showed high survival of the encapsulated cells, whereas gradual deterioration of free cells was observed. Thus, the findings highlight the importance of bio augmented strain in WWTPs where encapsulation is a crucial factor.


Assuntos
Fenol , Pseudomonas oleovorans , Biodegradação Ambiental , Células Imobilizadas , Fenóis , Águas Residuárias
10.
Braz J Biol ; 83: e240015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34320047

RESUMO

Zinc is an essential micronutrient that is required for optimum plant growth. It is present in soil in insoluble forms. Bacterial solubilization of soil unavailable form of Zn into available form, is an emerging approach to alleviate the Zn deficiency for plants and human beings. Zinc solubilizing bacteria (ZSB) could be a substitute for chemical Zn fertilizer. The present study aimed to isolate and characterize bacterial species from the contaminated soil and evaluate their Zn solubilizing potential. Zn resistant bacteria were isolated and evaluated for their MIC against Zn. Among the 13 isolated bacterial strains ZSB13 showed maximum MIC value upto 30mM/L. The bacterial strain with the highest resistance against Zn was selected for further analysis. Molecular characterization of ZSB13 was performed by 16S rRNA gene amplification which confirmed it as Pseudomonas oleovorans. Zn solubilization was determined through plate assay and broth medium. Four insoluble salts (zinc oxide (ZnO), zinc carbonate (ZnCO3), zinc sulphite (ZnS) and zinc phosphate (Zn3(PO4)2) were used for solubilization assay. Our results shows 11 mm clear halo zone on agar plates amended with ZnO. Likewise, ZSB13 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18.2 ppm). Furthermore, Zn resistance genes czcD was also enriched in ZSB13. In our study, bacterial strain comprising Zn solubilization potential has been isolated that could be further used for the growth enhancement of crops.


Assuntos
Pseudomonas oleovorans , Poluentes do Solo , Humanos , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Zinco
11.
Arch Microbiol ; 203(6): 3117-3124, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33797591

RESUMO

A bacterial strain ODT-83 is isolated from oysters, which is capable of adsorbing norovirus (NoV) via histo-blood group antigen-like (HBGA-like) substances. To better understand its genetic background associated with the production of HBGA-like substances, the genome of the ODT-83 was completely sequenced and analyzed. The ODT-83 only contains one circular chromosome, with a length of 5,384,159 bp. Both the 16S rRNA gene phylogeny and the average nucleotide identity (ANI) analyses confirm that the ODT-83 is a new Pseudomonas oleovorans strain. The whole genome encodes a total of 5037 predicted open reading frames (ORFs), 66 tRNA genes and 12 rRNA genes. Two gene clusters are detected on the genome, which are involved in the synthesis of polysaccharides of alginate and Pel, respectively. These results lay the foundation for further research on the interaction between the P. oleovorans strain ODT-83 and NoV.


Assuntos
Genoma Bacteriano , Ostreidae , Pseudomonas oleovorans , Animais , Técnicas de Tipagem Bacteriana , Ácidos Graxos/análise , Genoma Bacteriano/genética , Ostreidae/microbiologia , Filogenia , Pseudomonas/genética , Pseudomonas oleovorans/classificação , Pseudomonas oleovorans/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
12.
Arch Toxicol ; 94(10): 3487-3502, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681188

RESUMO

The skin`s microbiome is predominantly commensalic, harbouring a metabolic potential far exceeding that of its host. While there is clear evidence that bacteria-dependent metabolism of pollutants modulates the toxicity for the host there is still a lack of models for investigating causality of microbiome-associated pathophysiology or toxicity. We now report on a biologically characterised microbial-skin tissue co-culture that allows studying microbe-host interactions for extended periods of time in situ. The system is based on a commercially available 3D skin model. In a proof-of-concept, this model was colonised with single and mixed cultures of two selected skin commensals. Two different methods were used to quantify the bacteria on the surface of the skin models. While Micrococcus luteus established a stable microbial-skin tissue co-culture, Pseudomonas oleovorans maintained slow continuous growth over the 8-day cultivation period. A detailed skin transcriptome analysis showed bacterial colonisation leading to up to 3318 significant changes. Additionally, FACS, ELISA and Western blot analyses were carried out to analyse secretion of cytokines and growth factors. Changes found in colonised skin varied depending on the bacterial species used and comprised immunomodulatory functions, such as secretion of IL-1α/ß, Il-6, antimicrobial peptides and increased gene transcription of IL-10 and TLR2. The colonisation also influenced the secretion of growth factors such as VFGFA and FGF2. Notably, many of these changes have already previously been associated with the presence of skin commensals. Concomitantly, the model gained first insights on the microbiome's influence on skin xenobiotic metabolism (i.e., CYP1A1, CYP1B1 and CYP2D6) and olfactory receptor expression. The system provides urgently needed experimental access for assessing the toxicological impact of microbiome-associated xenobiotic metabolism in situ.


Assuntos
Interações entre Hospedeiro e Microrganismos , Micrococcus luteus/crescimento & desenvolvimento , Pseudomonas oleovorans/crescimento & desenvolvimento , Pele/microbiologia , Anti-Infecciosos/metabolismo , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Pele/metabolismo , Simbiose , Técnicas de Cultura de Tecidos
13.
Chemosphere ; 258: 127148, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32535434

RESUMO

Tetrahydrofuran (THF) is a common highly toxic cyclic aliphatic ether that frequently exists in waste gases. Removal of gaseous THF is a serious issue with important environmental ramifications. A novel three-phase airlift bioreactor (TPAB) loaded with immobilized cells was developed for efficient THF removal from gas streams. An effective THF-degrading transformant, Pseudomonas oleovorans GDT4, which contains the pTn-Mod-OTc-gfp plasmid and was tagged with a green fluorescent protein (GFP), was constructed. Continuous treatment of THF-containing waste gases was succeeded by the GFP-labelled cells immobilized with calcium alginate and activated carbon fiber in the TPAB for 60 days with >90% removal efficiency. The number of fluorescent cells in the beads reached 1.7 × 1011 cells·g-1 of bead on day 10, accounting for 83.3% of the total number of cells. The amount further increased to 3.0 × 1011 cells·g-1 of bead on day 40. However, it decreased to 2.5 × 1011 cells·g-1 of bead with a substantial increase in biomass in the liquid because of cell leakage and hydraulic shock. PCR-DGGE revealed that P. oleovorans was the dominant microorganism throughout the entire operation. The maximum elimination capacity was affected by empty bed residence time (EBRT). The capacity was only 25.9 g m-3·h-1 at EBRT of 80 s, whereas it reached 37.8 g m-3·h-1 at EBRT of 140 s. This work provides an alternative method for full-scale removal of gaseous THF and presents a useful tool for determining the biomass of a specific degrader in immobilized beads.


Assuntos
Reatores Biológicos/microbiologia , Furanos/metabolismo , Pseudomonas oleovorans/metabolismo , Gerenciamento de Resíduos/métodos , Alginatos/química , Biodegradação Ambiental , Biomassa , Fibra de Carbono , Células Imobilizadas/metabolismo , Carvão Vegetal , Desenho de Equipamento , Gases , Proteínas de Fluorescência Verde/genética , Microbiota , Microrganismos Geneticamente Modificados , Pseudomonas oleovorans/citologia , Pseudomonas oleovorans/genética , Gerenciamento de Resíduos/instrumentação
14.
Occup Med (Lond) ; 69(8-9): 632-634, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31504833

RESUMO

Hypersensitivity pneumonitis (HP) is a chronic inflammatory lung disease caused by repeated inhalation of antigenic substances. We present a case of metalworking fluids (MWFs)-HP sensitized to Pseudomonas oleovorans in a cystic fibrosis patient. This case illustrates that HP diagnosis remains challenging, especially in patients with another pulmonary disease, and that serodiagnosis contributes to identifying the precise microorganism involved. It also demonstrates that P. oleovorans is an important secondary aetiological agent in MWF-HP, less known than Mycobacterium immunogenum.


Assuntos
Alveolite Alérgica Extrínseca/diagnóstico , Fibrose Cística/complicações , Doenças Profissionais/diagnóstico , Adulto , Alveolite Alérgica Extrínseca/tratamento farmacológico , Alveolite Alérgica Extrínseca/etiologia , Alveolite Alérgica Extrínseca/microbiologia , Antígenos de Bactérias , França , Humanos , Óleos Industriais/microbiologia , Masculino , Metalurgia , Doenças Profissionais/imunologia , Doenças Profissionais/microbiologia , Exposição Ocupacional , Pseudomonas oleovorans/imunologia
15.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30413473

RESUMO

Amination of bulky ketones, particularly in (R) configuration, is an attractive chemical conversion; however, known ω-transaminases (ω-TAs) show insufficient levels of performance. By applying two screening methods, we discovered 10 amine transaminases from the class III ω-TA family that were 38% to 76% identical to homologues. We present examples of such enzymes preferring bulky ketones over keto acids and aldehydes with stringent (S) selectivity. We also report representatives from the class III ω-TAs capable of converting (R) and (S) amines and bulky ketones and one that can convert amines with longer alkyl substituents. The preference for bulky ketones was associated with the presence of a hairpin region proximal to the conserved Arg414 and residues conforming and close to it. The outward orientation of Arg414 additionally favored the conversion of (R) amines. This configuration was also found to favor the utilization of putrescine as an amine donor, so that class III ω-TAs with Arg414 in outward orientation may participate in vivo in the catabolism of putrescine. The positioning of the conserved Ser231 also contributes to the preference for amines with longer alkyl substituents. Optimal temperatures for activity ranged from 45 to 65°C, and a few enzymes retained ≥50% of their activity in water-soluble solvents (up to 50% [vol/vol]). Hence, our results will pave the way to design, in the future, new class III ω-TAs converting bulky ketones and (R) amines for the production of high-value products and to screen for those converting putrescine.IMPORTANCE Amine transaminases of the class III ω-TAs are key enzymes for modification of chemical building blocks, but finding those capable of converting bulky ketones and (R) amines is still challenging. Here, by an extensive analysis of the substrate spectra of 10 class III ω-TAs, we identified a number of residues playing a role in determining the access and positioning of bulky ketones, bulky amines, and (R)- and (S) amines, as well as of environmentally relevant polyamines, particularly putrescine. The results presented can significantly expand future opportunities for designing (R)-specific class III ω-TAs to convert valuable bulky ketones and amines, as well as for deepening the knowledge into the polyamine catabolic pathways.


Assuntos
Proteínas de Bactérias/genética , Bioprospecção , Genes Bacterianos , Cetonas/metabolismo , Poliaminas/metabolismo , Pseudomonas oleovorans/genética , Transaminases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pseudomonas oleovorans/enzimologia , Pseudomonas oleovorans/metabolismo , Alinhamento de Sequência , Transaminases/metabolismo
16.
Int J Biol Macromol ; 107(Pt A): 276-282, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28867233

RESUMO

A sticky polymer, poly(3-hydroxyundecenoate) (PHU), was produced by Pseudomonas oleovorans when nonanoate and undecenoate were used as carbon sources. Crosslinked PHU (CL-PHU) was prepared by heating using benzoyl peroxide as a crosslinker. According to the degree of crosslinking in the polymer, three types of CL-PHU were prepared: CL-PHU50, CL-PHU60 and CL-PHU70. Fourier transform-infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry results suggested that crosslinking of PHU was successfully achieved by heat, which increased the crosslinking density and decreased stiffness and flexibility of the polymer. Water contact angle measurements revealed no differences of hydrophilicity as the crosslinking density. Slight morphological changes of CL-PHU film surfaces were observed by atomic force microscopy. Chinese hamster ovary cells were used to investigate the biocompatibility of CL-PHU films using poly(l-lactide) surfaces as control. Surface properties of the film, such as roughness and adhesive force, enhanced the adhesion and proliferation of cells on the films. CL-PHU might be useful for cell compatible biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Polímeros/química , Ácidos Undecilênicos/química , Animais , Peróxido de Benzoíla/química , Materiais Biocompatíveis/farmacologia , Células CHO , Varredura Diferencial de Calorimetria , Cricetulus , Reagentes de Ligações Cruzadas/química , Microscopia de Força Atômica , Polímeros/farmacologia , Pseudomonas oleovorans/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Ácidos Undecilênicos/farmacologia
17.
J Asian Nat Prod Res ; 19(7): 712-718, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27666872

RESUMO

The pentacyclic triterpenoid hederagenin (1) was subjected to biotransformation by Cunninghamella echinulate CGMCC 3.2000, Mucor subtilissimus CGMCC 3.2454 and Pseudomonas oleovorans CGMCC 1.1641. Three metabolites were obtained. On the basis of nuclear magnetic resonance and high-resolution mass spectral analyses, their structures were characterized as 3ß, 23-dihydroxyolean-12-en-28-oic acid 28-O-ß-D-glucopyranosyl ester (2), 3ß, 15α, 23-trihydroxyolean-12-en-28-oic acid (3), 1ß, 3ß, 23-trihydroxyolean-12-en-28-oic acid (4), and metabolite (3) was a new compound. This was the first report on the biotransformation of hederagenin.


Assuntos
Cunninghamella/metabolismo , Mucor/metabolismo , Ácido Oleanólico/análogos & derivados , Pseudomonas oleovorans/metabolismo , Biotransformação , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ácido Oleanólico/química , Saponinas/química
18.
N Biotechnol ; 35: 35-41, 2017 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884748

RESUMO

Thermo-solar plants use eutectic mixtures of diphenyl ether (DE) and biphenyl (BP) as heat transfer fluid (HTF). Potential losses of HTF may contaminate soils and bioremediation is an attractive tool for its treatment. DE- or BP-degrading bacteria are known, but up to now bacteria able to degrade HTF mixture have not been described. Here, five bacterial strains which are able to grow with HTF or its separate components DE and BP as sole carbon sources have been isolated, either from soils exposed to HTF or from rhizospheric soils of plants growing near a thermo-solar plant. The organisms were identified by 16S rRNA gene sequencing as Achromobacter piechaudii strain BioC1, Pseudomonas plecoglossicida strain 6.1, Pseudomonas aeruginosa strains HBD1 and HBD3, and Pseudomonas oleovorans strain HBD2. Activity of 2,3-dihydroxybiphenyl dioxygenase (BphC), a key enzyme of the biphenyl upper degradation pathway, was detected in all isolates. Pseudomonas strains almost completely degraded 2000ppm HTF after 5-day culture, and even tolerated and grew in the presence of 150,000ppm HTF, being suitable candidates for in situ soil bioremediation. Degradation of both components of HTF is of particular interest since in the DE-degrader Sphingomonas sp. SS3, growth on DE or benzoate was strongly inhibited by addition of BP.


Assuntos
Achromobacter/metabolismo , Compostos de Bifenilo/metabolismo , Éteres Fenílicos/metabolismo , Pseudomonas/metabolismo , Achromobacter/isolamento & purificação , Biodegradação Ambiental , Biotecnologia , Temperatura Alta , Microbiologia Industrial , Pseudomonas/isolamento & purificação , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Pseudomonas oleovorans/isolamento & purificação , Pseudomonas oleovorans/metabolismo , Rizosfera , Microbiologia do Solo , Energia Solar
19.
J Hazard Mater ; 320: 479-486, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27585280

RESUMO

Polyfluoroalkyl phosphates (PAPs), a group of fluorotelomer alcohol (FTOH)-based surfactants commonly used in water- and grease-proof food contact paper, have been suggested as a direct source of human exposure to health-concerned perfluoroalkyl carboxylic acids (PFCAs). This study investigated factors affecting biotranformation of 6:2 polyfluoroalkyl phosphates (6:2 PAPs) by three known FTOH-degrading Pseudomonas strains (Pseudomonas butanovora, P. oleovorans, and P. fluorescens DSM 8341) under different co-substrate conditions and compared to that by activated sludge samples. The three pure strains transformed 6:2 PAPs into eight different per- and poly-fluoroalkyl carboxylic acids (PFCAs) and/or PFCA precursors. P. fluorescens DSM 8341 produced 5:2 sFTOH [CF3(CF2)4CH(OH)CH3] and P. oleovorans produced 5:2 ketone [CF3(CF2)4C(O)CH3] as the primary transformation product, respectively, with citrate having a minimal impact on the transformation. P. butanovora with lactate produced more diverse transformation products than those by any two strains. Activated sludge was more efficient at transforming 6:2 PAPs and produced more transformation products including PFHpA [CF3(CF2)5COOH] and PFPeA [CF3(CF2)3COOH], with 5:2 sFTOH as the most abundant product on day 30. The abundance of the alkane hydroxylase (alkB) gene related to alkane oxidation, the changes of total microbial population as well as their community structure in activated sludge during 6:2 PAPs biotransformation were also investigated.


Assuntos
Hidrocarbonetos Fluorados/metabolismo , Fosfatos/metabolismo , Pseudomonas fluorescens/metabolismo , Pseudomonas oleovorans/metabolismo , Enzimas AlkB/genética , Biotransformação , Consórcios Microbianos , Pseudomonas fluorescens/isolamento & purificação , Pseudomonas oleovorans/isolamento & purificação , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...